10 research outputs found

    Optimizing calibration kernels and sampling pattern for ESPIRiTbased compressed sensing implementation in 3D MRI

    Get PDF
    The high fidelity reconstruction of compressed and low-resolution magnetic resonance (MR) data is essential for simultaneously improving patient care, accuracy in diagnosis and quality in clinical research. Sponsored by the Royal Society through the Newton Mobility Grant Scheme, a half-day workshop on reconstruction schemes for MR data was held on the 17th of August 2016 to discuss new ideas from related research fields that could be useful to overcome the shortcomings of the conventional reconstruction methods that have been evaluated up to date. Participants were 21 university students, computer scientists, image analysts, engineers and physicists from institutions from 6 different countries. This presentation highlights the efforts, advances and limitations of current work on compressed sensing techniques for reconstructing MR data

    Advanced sparse sampling techniques for accelerating structural and quantitative MRI

    Get PDF
    Magnetic Resonance Imaging (MRI) has become a routine clinical procedure for the screening, diagnosis and treatment monitoring of various clinical conditions. Although MRI has highly desirable properties such as being completely non-ionizing and providing excellent soft tissue contrast which has resulted in its widespread usage across the gamut of clinical applications, it is limited by a slow data acquisition process. Several techniques have been developed over the years that have considerably improved the speed of MRI but there is still a clinical need to further accelerate MRI for many clinical applications. This thesis focuses on two recent advances in MRI acceleration to reduce the overall patient scan time. The first part of the thesis describes the development of a fast 3D neuroimaging methodology that has been implemented in a clinical Magnetic Resonance (MR) sequence which was accelerated using a combination of compressed sensing and sampling order optimization of acquired measurements. This methodology reduced the overall scan time by more than 60% compared to the normal scan time while also producing images of acceptable quality for clinical diagnosis. The clinical utility of accelerated neuroimaging is demonstrated by conducting a healthy volunteer study on eight subjects using this fast 3D MRI method. The results of the radiological diagnostic quality assessments that were carried out on the accelerated human brain MR images by four experienced neuroradiologists are presented. The results show that accelerated MR neuroimaging retained sufficient clinical diagnostic value for certain clinical applications. The second part of the thesis describes the development of an accelerated Cartesian sampling scheme for a rapid quantitative MR method called Magnetic Resonance Fingerprinting (MRF). This method was able to simultaneously generate quantitative multi-parametric maps such as T1, T2 and proton density (PD) maps in a very short scan duration that is clinically acceptable. The developed Cartesian sampling method using Echo Planar Imaging (EPI) is compared with conventional spiral sampling that is generally used for MR fingerprinting. The ability of novel iterative reconstruction techniques to improve the multi-parametric estimation accuracy is also demonstrated. The results show that accelerated Cartesian MR fingerprinting can be an alternative to conventional spiral MR fingerprinting

    Multi-shot Echo Planar Imaging for accelerated Cartesian MR Fingerprinting: An alternative to conventional spiral MR Fingerprinting.

    Get PDF
    PURPOSE: To develop an accelerated Cartesian MRF implementation using a multi-shot EPI sequence for rapid simultaneous quantification of T1 and T2 parameters. METHODS: The proposed Cartesian MRF method involved the acquisition of highly subsampled MR images using a 16-shot EPI readout. A linearly varying flip angle train was used for rapid, simultaneous T1 and T2 quantification. The results were compared to a conventional spiral MRF implementation. The acquisition time per slice was 8s and this method was validated on two different phantoms and three healthy volunteer brains in vivo. RESULTS: Joint T1 and T2 estimations using the 16-shot EPI readout are in good agreement with the spiral implementation using the same acquisition parameters (<4% deviation for T1 and <6% deviation for T2). The T1 and T2 values also agree with the conventional values previously reported in the literature. The visual qualities of fine brain structures in the multi-parametric maps generated by multi-shot EPI-MRF and Spiral-MRF implementations were comparable. CONCLUSION: The multi-shot EPI-MRF method generated accurate quantitative multi-parametric maps similar to conventional Spiral-MRF. This multi-shot approach achieved considerable k-space subsampling and comparatively short TRs in a similar manner to spirals and therefore provides an alternative for performing MRF using an accelerated Cartesian readout; thereby increasing the potential usability of MRF.The research leading to these results has received funding from the European Commission H2020 Framework Programme (H2020- MSCAITN- 2014), number 642685 MacSeNet, the Engineering and Physical Sciences Research Council (EPSRC) platform Compressed Quantitative MRI grant, number EP/M019802/1 and the Scottish Research Partnership in Engineering (SRPe) award, number SRPe PECRE1718/ 17
    corecore